Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            The positive Arctic–methane (CH4) feedback forms when more CH4is released from the Arctic tundra to warm the climate, further stimulating the Arctic to emit CH4. This study utilized the CLM-Microbe model to project CH4emissions across five distinct Arctic tundra ecosystems on the Alaska North Slope, considering three Shared Socioeconomic Pathway (SSP) scenarios using climate data from three climate models from 2016 to 2100. Employing a hyper-resolution of 5 m × 5 m within 40,000 m2domains accounted for the Arctic tundra’s high spatial heterogeneity; three sites were near Utqiaġvik (US-Beo, US-Bes, and US-Brw), with one each in Atqasuk (US-Atq) and Ivotuk (US-Ivo). Simulated CH4emissions substantially increased by a factor of 5.3 to 7.5 under the SSP5–8.5 scenario compared to the SSP1–2.6 and SSP2–4.5 scenarios. The projected CH4emissions exhibited a stronger response to rising temperature under the SSP5–8.5 scenario than under the SSP1–2.6 and SSP2–4.5 scenarios, primarily due to strong temperature dependence and the enhanced precipitation-induced expansion of anoxic conditions that promoted methanogenesis. The CH4transport via ebullition and plant-mediated transport is projected to increase under all three SSP scenarios, and ebullition dominated CH4transport by 2100 across five sites. Projected CH4emissions varied in temperature sensitivity, with a Q10range of 2.7 to 60.9 under SSP1–2.6, 3.8 to 17.6 under SSP2–4.5, and 5.7 to 17.2 under SSP5–8.5. Compared with the other three sites, US-Atq and US-Ivo were estimated to have greater increases in CH4emissions due to warmer temperatures and higher precipitation. The fact that warmer sites and warmer climate scenarios had higher CH4emissions suggests an intensified positive Arctic–CH4feedback in the 21st century. Microbial physiology and substrate availability dominated the enhanced CH4production. The simulated intensified positive feedback underscores the urgent need for a more mechanistic understanding of CH4dynamics and the development of strategies to mitigate CH4across the Arctic.more » « less
- 
            Abstract. Soil pore water (SPW) chemistry can vary substantially acrossmultiple scales in Arctic permafrost landscapes. The magnitude of thesevariations and their relationship to scale are critical considerations forunderstanding current controls on geochemical cycling and for predictingfuture changes. These aspects are especially important for Arctic changemodeling where accurate representation of sub-grid variability may benecessary to predict watershed-scale behaviors. Our research goal is tocharacterize intra- and inter-watershed soil water geochemical variations attwo contrasting locations in the Seward Peninsula of Alaska, USA. We thenattempt to identify the key factors controlling concentrations of importantpore water solutes in these systems. The SPW geochemistry of 18 locationsspanning two small Arctic catchments was examined for spatial variabilityand its dominant environmental controls. The primary environmental controlsconsidered were vegetation, soil moisture and/or redox condition, water–soilinteractions and hydrologic transport, and mineral solubility. The samplinglocations varied in terms of vegetation type and canopy height, presence orabsence of near-surface permafrost, soil moisture, and hillslope position.Vegetation was found to have a significant impact on SPW NO3-concentrations, associated with the localized presence of nitrogen-fixingalders and mineralization and nitrification of leaf litter from tall willowshrubs. The elevated NO3- concentrations were, however, frequentlyequipoised by increased microbial denitrification in regions with sufficientmoisture to support it. Vegetation also had an observable impact on soil-moisture-sensitive constituents, but the effect was less significant. Theredox conditions in both catchments were generally limited by Fe reduction,seemingly well-buffered by a cache of amorphous Fe hydroxides, with the mostreducing conditions found at sampling locations with the highest soilmoisture content. Non-redox-sensitive cations were affected by a widevariety of water–soil interactions that affect mineral solubility andtransport. Identification of the dominant controls on current SPWhydrogeochemistry allows for qualitative prediction of future geochemicaltrends in small Arctic catchments that are likely to experience warming andpermafrost thaw. As source areas for geochemical fluxes to the broaderArctic hydrologic system, geochemical processes occurring in theseenvironments are particularly important to understand and predict withregards to such environmental changes.more » « less
- 
            Spatial heterogeneity in methane (CH 4 ) flux requires a reliable upscaling approach to reach accurate regional CH 4 budgets in the Arctic tundra. In this study, we combined the CLM-Microbe model with three footprint algorithms to scale up CH 4 flux from a plot level to eddy covariance (EC) tower domains (200 m × 200 m) in the Alaska North Slope, for three sites in Utqiaġvik (US-Beo, US-Bes, and US-Brw), one in Atqasuk (US-Atq) and one in Ivotuk (US-Ivo), for a period of 2013–2015. Three footprint algorithms were the homogenous footprint (HF) that assumes even contribution of all grid cells, the gradient footprint (GF) that assumes gradually declining contribution from center grid cells to edges, and the dynamic footprint (DF) that considers the impacts of wind and heterogeneity of land surface. Simulated annual CH 4 flux was highly consistent with the EC measurements at US-Beo and US-Bes. In contrast, flux was overestimated at US-Brw, US-Atq, and US-Ivo due to the higher simulated CH 4 flux in early growing seasons. The simulated monthly CH 4 flux was consistent with EC measurements but with different accuracies among footprint algorithms. At US-Bes in September 2013, RMSE and NNSE were 0.002 μmol m −2 s −1 and 0.782 using the DF algorithm, but 0.007 μmol m −2 s −1 and 0.758 using HF and 0.007 μmol m −2 s −1 and 0.765 using GF, respectively. DF algorithm performed better than the HF and GF algorithms in capturing the temporal variation in daily CH 4 flux each month, while the model accuracy was similar among the three algorithms due to flat landscapes. Temporal variations in CH 4 flux during 2013–2015 were predominately explained by air temperature (67–74%), followed by precipitation (22–36%). Spatial heterogeneities in vegetation fraction and elevation dominated the spatial variations in CH 4 flux for all five tower domains despite relatively weak differences in simulated CH 4 flux among three footprint algorithms. The CLM-Microbe model can simulate CH 4 flux at both plot and landscape scales at a high temporal resolution, which should be applied to other landscapes. Integrating land surface models with an appropriate algorithm provides a powerful tool for upscaling CH 4 flux in terrestrial ecosystems.more » « less
- 
            Abstract. Permafrost-affected ecosystems of the Arctic–boreal zone in northwestern North America are undergoing profound transformation due to rapid climate change. NASA's Arctic Boreal Vulnerability Experiment (ABoVE) is investigating characteristics that make these ecosystems vulnerable or resilient to this change. ABoVE employs airborne synthetic aperture radar (SAR) as a powerful tool to characterize tundra, taiga, peatlands, and fens. Here, we present an annotated guide to the L-band and P-band airborne SAR data acquired during the 2017, 2018, 2019, and 2022 ABoVE airborne campaigns. We summarize the ∼80 SAR flight lines and how they fit into the ABoVE experimental design (Miller et al., 2023; https://doi.org/10.3334/ORNLDAAC/2150). The Supplement provides hyperlinks to extensive maps, tables, and every flight plan as well as individual flight lines. We illustrate the interdisciplinary nature of airborne SAR data with examples of preliminary results from ABoVE studies including boreal forest canopy structure from TomoSAR data over Delta Junction, AK, and the Boreal Ecosystem Research and Monitoring Sites (BERMS) area in northern Saskatchewan and active layer thickness and soil moisture data product validation. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band airborne SAR data (https://uavsar.jpl.nasa.gov/cgi-bin/data.pl).more » « less
- 
            A grand challenge facing society is climate change caused mainly by rising CO 2 concentration in Earth’s atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO 2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO 2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO 2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.more » « less
- 
            Range shifts in a foundation sedge potentially induce large Arctic ecosystem carbon losses and gainsAbstract Foundation species have disproportionately large impacts on ecosystem structure and function. As a result, future changes to their distribution may be important determinants of ecosystem carbon (C) cycling in a warmer world. We assessed the role of a foundation tussock sedge (Eriophorum vaginatum) as a climatically vulnerable C stock using field data, a machine learning ecological niche model, and an ensemble of terrestrial biosphere models (TBMs). Field data indicated that tussock density has decreased by ∼0.97 tussocks per m2over the past ∼38 years on Alaska’s North Slope from ∼1981 to 2019. This declining trend is concerning because tussocks are a large Arctic C stock, which enhances soil organic layer C stocks by 6.9% on average and represents 745 Tg C across our study area. By 2100, we project that changes in tussock density may decrease the tussock C stock by 41% in regions where tussocks are currently abundant (e.g. −0.8 tussocks per m2and −85 Tg C on the North Slope) and may increase the tussock C stock by 46% in regions where tussocks are currently scarce (e.g. +0.9 tussocks per m2and +81 Tg C on Victoria Island). These climate-induced changes to the tussock C stock were comparable to, but sometimes opposite in sign, to vegetation C stock changes predicted by an ensemble of TBMs. Our results illustrate the important role of tussocks as a foundation species in determining future Arctic C stocks and highlight the need for better representation of this species in TBMs.more » « less
- 
            null (Ed.)Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
